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Closed expressions are derived for resonant multidimensional x-ray spectroscopy using the quasiparticle
nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave
mixing signals which probe single and two-core-hole states. Nonlinear x-ray signals are compactly expressed
in terms of one- and two-particle Green’s functions which can be obtained from the solution of Hedin-type
equations at the GW level.
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I. INTRODUCTION

With the advent of femtosecond to attosecond x-ray
sources,1–6 time-resolved resonant core-level x-ray
spectroscopy7 has become a promising tool for studying
electron and nuclear motions in real space and real time.
Resonant techniques provide detailed information beyond
the charge density derived from time-resolved diffraction.
Nonlinear x-ray spectroscopy can monitor the dynamics such
as making and breaking of chemical bonds at the molecular
level.

In a recent work8 we derived closed expressions for at-
tosecond coherent stimulated x-ray Raman signals �CXRS�.
It was shown that CXRS can be expressed in terms of one-
particle Green’s functions which depend parametrically on
the core hole. In this paper we extend this approach to study
nonlinear x-ray spectra by combining the many-body
Green’s function formulation with the exciton representation
of valence electronic excitations. The exciton representation
has been particularly useful for computing the optical va-
lence excitations of molecular aggregates.9–11 Hedin’s
Green’s function approach12 provides an exact many-body
formulation which avoids the computation of many-body
wave functions. In most applications, Green’s function
theory requires a self-consistent computation which can be-
come quite tedious and demanding as the system size grows.
Various approximations are therefore invoked in practical ap-
plications. The GW approximation12,13 constitutes a good
compromise of accuracy and cost and various variants have
often been used in many applications of the Green’s function
approach. By combining the exciton modeling of nonlinear
response with many-body formulation, we can reduce the
complexity of the Green’s function approach. We derive a
Bethe-Salpeter �BS�-type equation for two-electron-hole
pairs. In the standard BS equation,13 the scattering matrix
which represents the interaction between an electron and a
hole is expressed as a derivative of the one-particle self-
energy with respect to the one-particle Green’s function
which is then calculated using the GW approximation.14,15 A
further simplification is introduced by taking the screened-
Coulomb interaction to be independent of the Green’s
function.14 Despite the lack of a rigorous justification, this
approach works well for a broad range of systems including
isolated localized atoms and molecules,15 bulk semiconduc-

tors and insulators,16,17 conjugated polymers,18 and infinite
periodic crystals.14,15 It has been difficult to quantify the in-
fluence of the variation of screened potential with respect to
Green’s function on the optical spectra because it involves an
expensive self-consistent calculation of the derivative of the
screened potential. Here we employ the GW approximation
to derive an algebraic expression for the electron-hole scat-
tering matrix which only depends on the one-particle Green’s
function. The variation of screened-Coulomb potential is in-
cluded approximately. This yields a simplified practical ex-
pression for the scattering matrix which requires comparable
efforts to computing the one-particle Green’s function at the
GW level. We extend this result and combine it with the
nonlinear exciton equation �NEE� approach19,20 to obtain
closed expressions for nonlinear x-ray signals.

The paper is organized as follows. In Sec. II, we introduce
the one- and two-particle Green’s functions parametrized in
terms of core holes. By defining a projection operator in the
one-excitation space, we derive a closed expression for the
nonlinear signal in the direction kIII=k1+k2−k3 in terms of
parametrized Green’s functions. In Sec. III, we present a self-
consistent scheme for computing these Green’s functions.
We conclude in Sec. IV.

II. GREEN’S FUNCTION EXPRESSION FOR THE
NONLINEAR RESPONSE

We divide the electronic system of the molecule into a
core and the valence parts. The system is described by the
Mahan-Nozieres–De Dominics �MND� deep-core
Hamiltonian21–23

Ĥ = Ĥ0 + ĤC + ĤI, �1�

where Ĥ0 is the free-electron part

Ĥ0 = �
i

�iĉi
†ĉi + �

n

�nĉn
†ĉn. �2�

The indices i , j ,k , l denote the valence orbitals whereas m ,n
are the core orbitals and ci

†�ci� are Fock-space Fermi creation
�annihilation� operators. The coulomb interaction is
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ĤC =
1

2 �
iji�j�

Viji�j�ĉi
†ĉj

†ĉi�ĉj� +
1

2 �
mnm�n�

Vmnm�n�ĉm
† ĉn

†ĉm�ĉn�

− �
imnj

Wimnjĉi
†ĉmĉn

†ĉj . �3�

The three terms represent, respectively, valence-valence,
core-core, and valence-core interactions. The dipole interac-
tion with the x-ray pulse

ĤI = − �
im

�E+�t��im
� ĉi

†ĉm + E−�t��imĉm
† ĉi� , �4�

where �im is the dipole matrix element between the valence
orbital i and the core orbital m, and the field is treated as a
scalar for simplicity. We assume that the core holes created
by exciting core electrons to the valence orbitals have an
infinite mass. Their motion can thus be ignored and they
enter the calculation as fixed parameters. Only valence elec-
tron dynamics needs to be considered. This is a reasonable
approximation for x-ray spectroscopy where a hole is created
in one of the core orbitals which is tightly bound to the atom
nucleus compared to the valance electrons. Core migration
considerably slows down for deeper core levels.26

Using the exciton quasiparticle representation, the coher-
ent nonlinear response functions can be expressed in terms of
the exciton scattering matrix which represents the interaction
between two excitons created by interactions with x-ray
pulses at different sites.11,31 For clarity we focus on the
double quantum coherence signal generated in the direction
kIII=k1+k2−k3.11 Other signals are discussed in Appendix
A. Two temporally well-separated incoming x-ray pulses in-
teract with the molecule and excite two-core electrons at m
and n�m�n� to the valence orbitals. The kIII process is de-
picted by double-sided Fynmann diagram in Fig. 1.25

The corresponding correlation function expression is
given by

SIII�t4,t3,t2,t1� = ��t4 − t3���t3 − t2���t2 − t1�

� �
m�n

��Bm�t4�Bn�t3�Bm
† �t2�Bn

†�t1��

+ �Bn�t4�Bm�t3�Bm
† �t2�Bn

†�t1�� + t4 ⇔ t3� .

�5�

The core exciton operators B and B† are defined as

Bm = �
i

�imcicm
† ,

Bm
† = �

i

�micmci
†. �6�

The time evolution is in the Heisenberg representation

B�t� = eiH�tBe−iH�t, �7�

where H�=H0+HC. t4⇔ t3 inside the brackets in Eq. �5� rep-
resents two terms obtained by an interchange of t3 and t4 in
the correlation functions and the expectation value in Eq. �5�
is with respect to the N-electron ground state of the full
�valence+core� system. For clarity we assume that the x-ray
wavelength is short compared to the separation of sites n and
m so that the phase variation of the field across the molecule
may be neglected. This condition may not hold for hard x
rays. Equation �5� then need to be corrected by adding phase
factors exp�ik · �rn−rm��. The more general expressions are
given in the appendix of Ref. 24.

A formally straightforward way to compute the signal S is
by expanding it in many-body states and their eigenvalues.20

However computing the many-body states can become very
demanding while efficient electronic structure codes exist for
valence excitations; these are much less developed for core
excitations. Here we use an alternative approach and express
SIII in terms of the one- and two-particle Green’s functions.
An algorithm is presented for their computation which
avoids the explicit computation of the many-body states.

We are interested in the dynamics of two valence elec-
trons in presence of the Coulomb potential generated by core
holes. The core holes are treated as fixed parameters.

We next introduce the one- and two-electron Green’s
functions27,28

Gij
�m��t,t�� = − i�Tci�t�cj

†�t���m,

Gijkl
�m,n��t,t�,t1,t1�� = �− i�2�Tci�t�cj�t��ck

†�t1�cl
†�t1���m,n. �8�

where � · �m�� · �m,n� denote the trace over N-electron ground
state in the Coulomb potential of one �two� hole�s� at
m�m ,n�. T is the time-ordering operator; when acting on a
product of time-dependent operators, it rearranges them in
increasing order of time from right to the left. The super-
scripts �m� and �m ,n� represent parametric dependence on a
single core hole located at m and two-core holes at m and n,
respectively. Gij

�m� can be expressed as

Gij
�m��t,t�� = − i��t − t���a�ci�t�cj

†�t���a�m

+ i��t� − t��a�cj
†�t��ci�t��a�m

= − i��t − t��eiEa�t−t���a�ciU�t − t��cj
†�a�m

+ i��t� − t�e−iEa�t−t���a�cj
†U�t� − t�ci�a�m, �9�

where �a� is the valence many-body state with energy Ea.
The time evolution of operators in Eq. �9� is given by a
parametrized Hamiltonian, U�t�=e−iH�m�t. H�m� is obtained
from Eqs. �1�–�3� by tracing over core degrees of freedom
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FIG. 1. The nonlinear signal in the direction kIII=k1+k2−k3 is
depicted using the double-sided Feynman diagrams, describing the
evolution of the density matrix. The time increases from bottom to

top. �ā� is the ground state of the molecular system. �b̄� and �c̄� are
the singly-excited states while �ē� is the doubly-excited many-body
state.
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after replacing Wimnj =�mnWij
�m� and Vmnm�n�=�mn��nm�V

�m,n�,
where V�m,n� is a parameter and Wij

�m� depends on m para-
metrically. Note that V�m,n�=0 for m=n. Since the core exci-
tations are stationary, the core operators are assumed to be
time independent. The parametrized Hamiltonian thus ob-
tained is Hermitian. In writing the second equality sign in
Eq. �9�, we have further ignored the dependence of Ea on the
core hole at m. Thus all dependence to core hole is through
the time evolution inside the trace as marked by a subscript
m.

Similarly, by parametrizing the core hole, we can express
two-particle �two-time� Green’s function as

Gijkl
�m,n��t,t,t�,t�� = �− i�2��t − t��eEa�t−t��

��a�cicjU�t − t��ck
†cl

†�a�m,n

+ �− i�2��t� − t�eEa�t�−t�

��a�ck
†cl

†U�t − t��cicj�a�m,n, �10�

where m�n.
In order to express the signal in terms of the product of

one- and two-electron Green’s functions, we need to reduce
our many-body space with �N+1� valence electrons. This is
done by introducing the following projection operator in the
�N+1�-valence/one-core-hole space:

Pm = �
i

ci
†cm�ā��ā�cm

† ci, �11�

where �ā� is a many-body state of the full �valence+core�
system. This projection operator spans a subspace of the
many-body space of N+1-valence electrons �i.e., configura-
tion interaction �CI� singles. The full space includes all pos-
sible multiples of excitons�. This projection allows us to ob-
tain a closed expression for the signal in terms of the one-
and two-electron Green’s functions, which can then be com-
puted using many-body techniques.

We next insert the projection operators �11� into the ex-
pectation values in Eq. �5�. This is our key approximation
which allows us to express the signal in terms of the product
of Green’s functions. Using Eq. �6� in Eq. �5� and inserting
the projection operators we obtain

SIII�t4,t3,t2,t1� = �
m�n

�
ijkl

�im�mk� jn�nl��t4 − t3���t3 − t2�

���t2 − t1�eiEa�t4−t1���ā�cicm
† U�t4 − t3�

�Pmcjcn
†U�t3 − t2�cmck

†PnU�t2 − t1�cncl
†�ā�

+ �ā�cjcn
†U�t4 − t3�Pncicm

† U�t3 − t2�cmck
†

�PnU�t2 − t1�cncl
†�ā� + t4 ⇔ t3� . �12�

The exact expression for the signal may be obtained by re-
moving projection operators inside the brackets in Eq. �12�.

Using Eq. �11�, each term on the right-hand side �rhs� of
Eq. �12� factorizes into a product of three correlation func-
tions. By parametrizing the core variables, each correlation
function can be approximated as

�ā�cm
† ciU�t4 − t3�cj

†cm�ā� 	 �a�ciU�t4 − t3�cj
†�a�m, �13�

where U�t4− t3� on the rhs depends on core variables para-
metrically.

Making use of Eqs. �9�, �10�, and �13�, Eq. �12� becomes

SIII�t4,t3,t2,t1� = ��t4 − t3���t3 − t2���t2 − t1�

� �
m�n

�
ijkl

�
i�j�

�im�mk� jn�nlGi�l
�n��t2,t1�

��Gij�
�m��t4,t3�G j�jki�

�m,n� �t3,t2� + Gjj�
�n��t4,t3�

�G j�iki�
�m,n� �t3,t2� + �t4 ⇔ t3�� . �14�

This is a closed expression for the signal in terms of the one-
and two-electron Green’s functions. Corresponding expres-
sions for other techniques SI at kI=−k1+k2+k3 and SII at
kII=k1−k2+k3 are given in Appendix A.

Note that the Green’s functions in Eq. �14� depend only
on the differences of their time arguments �see Eq. �9��. De-
noting the time delay between x-ray pulses as �i= ti+1− ti,
where i=1,2 ,3, and taking the Fourier transform with re-
spect to delay times, the signal can be expressed in the fre-
quency domain as

SIII��3,�2,�1� = 

−�

�

d�1

−�

�

d�2

−�

�

d�3ei��1�1+�2�2+�3�3�

�SIII��1 + �2 + �3,�1 + �2,�1,0� . �15�

We get

SIII��3,�2,�1�

= i �
m�n

�
ijkl

�
i�j�

�im�mk� jn�nl
 
 
 d�1�d�2�d�3�

�2	�3

�� 1

�3 − �3� − i�
+

1

�3 + �3� − �2� − i�
�

�
Gi�l

�n���1���Gij�
�m���3��G j�jki�

�m,n� ��2�� + Gjj�
�n���3��G j�iki�

�m,n� ��2���

��1 − �1� − i����2 − �2� − i��
,

�16�

where � is an infinitesimal number and

Gij
�m���� = 


−�

�

dte−i�tGij
�m��t� �17�

is the Fourier transform of the Green’s function.

III. COMPUTING THE GREEN’S FUNCTIONS

The one-electron Green’s function, which appears in Eq.
�14�, can be obtained from the self-consistent solution of
Dyson equation

Gij
�m��t,t�� = Gij

0 �t,t�� + Gij�
0 �t,t1��
̃ j�i�

�m� �t1�,t2��Gi�j
�m��t2�,t�� ,

�18�

where G0 is the reference Green’s function corresponding to
noninteracting electron system and
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̃�m� = VC
�m� + 
�m�, �19�

where VC
�m� is the Coulomb potential due to the presence of a

core hole at m. 
�m� is the time-dependent self-energy which
comes from the electron-electron interactions and satisfy
closed exact equations �B28�–�B31�. A self-consistent solu-
tion of the exact equations is highly demanding numerically.
The GW approximation is generally used in order to simplify
these equations by ignoring the vertex corrections and keep-
ing only the first term in Eq. �B31�; the self-consistent cal-
culation of the Green’s functions and the self-energy is
greatly reduced. We then have �ijkl

�m��t , t� , t1�=�ik�lj��t
− t1���t− t�� and Eqs. �B29� and �B31� reduce to


ij
�m��t,t�� = iSi�ij�j

�m� �t�,t�Gi�j�
�m� �t,t�� , �20�

Sijkl
�m��t,t�� = V̄iklj��t − t�� + iV̄i�lkj�Sijk�l�

�m� �t1�,t��Gi�k�
�m� �t,t1��

�Gj�l�
�m� �t1�,t� , �21�

where V̄ijkl=Vijkl−Vjikl. Thus for one-electron Green’s func-
tion we only need to solve Eq. �18� self-consistently together
with Eqs. �20� and �21�. This is a standard approximation
which has been used extensively in studying optical proper-
ties of different kinds of systems ranging from single atoms
to semiconductor clusters and periodic crystals. The FEFF

code29 computes one-particle Green’s functions by solving
the GW equations �Eqs. �18�–�21��.

The two-electron Green’s function, Eq. �8�, satisfies the
equation �see Appendix B�

Gijkl
�m,n��t,t�,t1,t1�� = Gil

�m,n��t,t1��Gkj
�m,n��t1,t�� + Gii�

�m,n��t,t2��

�Gj�j
�m,n��t3�,t���i�j�k�l�

�m,n� �t2�,t3�,t4�,t5��

�Gk�l�kl
�m,n� �t4�,t5�,t1,t1�� , �22�

where the exact interaction kernel, �, is given by Eq. �B36�.
Note that one-electron Green’s functions entering in Eq. �22�
is calculated in the presence of two-core holes at m and n.
These satisfy equations similar to Eqs. �18�, �20�, and �21�
which can be obtained by simply replacing superscripts �m�

or �n� by �m ,n� and using �˜ �m,n�=VC
�m�+VC

�n�+
�m,n�. Within
the GW approximation, the interaction kernel for the two-
electron Green’s function, Eq. �B36�, reduces to a simpler
form

�ijkl
�m,n��t,t�,t1,t1�� = iSkilj

�m,n��t�,t���t − t1���t1� − t��

− V̄i�j j�lSi�ik�k
�m,n� �t1,t�Gi�k�

�m,n��t�,t1���t1� − t��

− V̄kjj�i�Si�ilk�
�m,n��t1�,t�Gk�i�

�m,n��t1�,t����t� − t1� .

�23�

This is our final result for the scattering matrix between two
valence electrons in presence of two-core holes. The first
term represents the contribution from screened Coulomb in-
teraction and the other two terms are induced by the change
in screening of the electron in valance and hole in the core
regions. Equations �22� and �23� together with Eqs. �18�,

�20�, and �21� �after making above changes in superscripts
for two-core holes� constitute a closed set of equations which
can be solved self-consistently to obtain the two-particle
Green’s function. Since both Sijkl

�m,n� and Gik
�m,n� come from the

self-consistent calculation of the Dyson equation in presence
of two-core holes, �ijkl

�m,n� can be readily computed from Eq.
�23�. The numerical effort involved in computing the two-
electron scattering matrix is comparable to computing the
one-particle Green’s function. Recently Feng et al.30 used
nonresonant x-ray Raman scattering to study exciton spec-
troscopy on h−BN near boron K edge by computing the
two-particle Green’s function.

IV. CONCLUSION

We have derived closed expressions for the nonlinear
x-ray spectra in terms of the many-body Green’s functions.
We expressed the kIII=k1+k2−k3 signal in terms of one- and
two-particle Green’s functions. In the deep-core Hamiltonian
formulation, the slow core-hole dynamics is ignored as com-
pared to the fast time evolution of the valence electron sys-
tem and core holes are simply treated as parameters. The key
approximation was the introduction of a projection operator
inside the multipoint correlation function of exciton operator
which allows expressing the signal in terms of one- and two-
particle Green’s functions in a simple way. In order to com-
pute these Green’s functions, we have generalized the He-
din’s equations12 and derived a modified Bethe-Salpeter
equation for two-particle Green’s function in presence of
two-core holes. A simple expression for the scattering matrix
for two electrons is derived in terms of one-particle Green’s
function which includes the effect of the change in screened
potential which goes beyond the usual GW approximation
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FIG. 2. Double-sided Feynman diagram for the nonlinear signal
in the direction kI=−k1+k2+k3. Time increases from bottom to

top. �ā� is the ground state of the molecular system. �b̄� and �c̄� are
the singly-excited states while �ē� is the doubly-excited many-body
state.
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where variation in screening potential is generally ignored.
The present formulation can be generalized straightforwardly
to accommodate inelastic interactions on the x-ray nonlinear
signals by including their effects through self-energy for one-
and two-particle Green’s functions.
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APPENDIX A: kI AND kII SIGNALS

The kI−k1+k2+k3 and kII=k1−k2+k3 processes repre-
sent the interaction with two x-ray pulses and involve four
Liouville space pathways which can be expressed in terms of
double-sided Feynman diagrams31 shown in Figs. 2 and 3.
The corresponding expressions in terms of the correlation
functions of the exciton variables analogous to Eq. �5� are
given by

SI�t1,t2,t3,t4� = �
mn

��t4 − t3���t3 − t2���t2 − t1�

���Bn�t1�Bn
†�t2�Bm�t4�Bm

† �t3��

+ �Bn�t1�Bn
†�t3�Bm�t4�Bm

† �t2��

+ �Bn�t1�Bm
† �t4�Bm

† �t3�Bn
†�t2��

+ �Bn�t1�Bm�t4�Bn
†�t3�Bm

† �t2��� �A1�

and

SII�t1,t2,t3,t4� = �
m�n

��t4 − t3���t3 − t2���t2 − t1�

���Bn�t2�Bn
†�t3�Bm�t4�Bm

† �t1��

+ �Bn�t4�Bn
†�t3�Bm�t2�Bm

† �t1��

+ �Bn�t2�Bm�t4�Bm
† �t3�Bn

†�t1��

+ �Bn�t2�Bm�t4�Bn
†�t3�Bm

† �t1��� , �A2�

where ti , i=1,2 ,3 ,4 is the interaction time of the four x-ray
pulses and operator Bm is defined in Eq. �6�. Repeating the
steps that transformed Eqs. �5�–�14�, we can express these
signals in terms of the one- and two-particle Green’s func-
tions as

SI�t1,t2,t3,t4�

= �
mn

�
a

P�a��
ijkl

�
i�j�

�im�mj�kn�nl��t4 − t3���t3 − t2�

���t2 − t1�
�
c

�fc;li�fc;ij�
� e−iEca�t2−t4�Gki�

�n�†�t2,t1�

�Gj�j
�m��t4,t3� + t2 ⇔ t3� − Gki�

�n�†�t4,t1��Gj�l
�n��t3,t2�

�Gi�ij�j
m,n �t4,t3� + Gj�j

�m��t3,t2�Gi�ilj�
m,n �t4,t3��� . �A3�

Similarly for kII we obtain

SII�t1,t2,t3,t4�

= �
m�n

�
a

P�a��
ijkl

�
i�j�

�im�mj�kn�nl��t4 − t3���t3 − t2�

���t2 − t1�
�
c

�fc;li�fc;ij�
� e−iEca�t3−t4�Gki�

�n�†�t3,t2�

�Gj�j
�m��t4,t1� + t2 ⇔ t4� − Gki�

�n�†�t4,t2��Gj�l
�n��t3,t1�

�Gi�ij�j
m,n �t4,t3� + Gj�j

�m��t3,t1�Gi�ilj�
m,n �t4,t3��� . �A4�

where fc;ij are the expansion coefficients in terms of the
configuration-interaction singles.8

APPENDIX B: DERIVATION OF EQS. (18)–(22)

We use a Hamiltonian parametrized in terms of the core
holes obtained by tracing out the core-hole degrees of free-
dom

H = �
i

�ici
†ci + �

ijkl

Vijklci
†cj

†ckcl + �
ij


ij
�m�ci

†cj . �B1�

The first two terms represent the kinetic energy and the
electron-electron interaction and 
ij

m in the last term repre-
sents the potential due to the presence of a core hole located
at mth core orbital. It is obtained by approximating the last
term in Eq. �3� with


ij
�m� � − Wimmjci

†cj�cmcm
† � . �B2�

We shall treat the valence electrons in the �average� field of
two-core holes. We are interested in the dynamics of one and
two electrons created by excitation from the core orbitals.
We thus need to calculate

�ijkl�t,t�,t1t1�� = �Tci�t�cj
†�t��ck�t1�cl

†�t1��� , �B3�

which for t , t1� t1� , t� represents the dynamics of two elec-
trons created at times t1 and t� and destroyed at times t and

t

t
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t

t

t
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t
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FIG. 3. Double-sided Feynman diagrams for nonlinear signal in
the direction kII=k1−k2+k3.
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t1�. �ijkl can be connected to a four-point Green’s function
Gijkl

�m,n� as

Gijkl�t,t�,t1t1�� = i�ijkl�t,t�,t1t1�� + iGij�t,t��Gkl�t1�,t1� .

�B4�

In order to obtain a closed equation for G̃�m� and Gijkl
�m,n�, we

add the following source term to the Hamiltonian �Eq. �B1�:

HG = �
i

�ici + �
i

��ci
†. �B5�

Here �i and �i
� are Grassmann variables which satisfy

�

��i

�

�� j
� = −

�

�� j
�

�

��i
. �B6�

We further define a generalized one-particle Green’s function

G̃ij�t,t�� ª −
i

I��,���
�Tci�t�cj

†�t����, �B7�

where � · �� represents the trace with respect to the density
matrix corresponding to the full Hamiltonian including the
Grassmann terms and

I��,��� = �Te−i�d��i��i���ci���+�i
����ci

†������. �B8�

The one-particle Green’s function Gij
�m,n� is obtained simply

by setting �=��=0 in Eq. �B7�. Switching over to the inter-
action picture with respect to the Hamiltonian HG, Eq. �B7�
can be expressed as

G̃ij�t,t�� = −
i

I��,���
�Tci�t�cj

†�t��I��,���� . �B9�

Taking the functional derivative32 with respect to � and ��,
we obtain

� �2G̃ij�t,t��
��l

��t1�� � �k�t1�
�

���=0

= Gijkl�t,t�,t1,t1�� , �B10�

where ���=0 is the short-hand notation for �=��=0.
Thus our strategy is to first compute a closed equation for

the Green’s function G̃ij and then using Eq. �B10�, we obtain
a closed equation for the four particle Green’s function, Gijkl.

The equation of motion for G̃ij is derived by taking time
derivative of Eq. �B7�.

iI��,���
�

�t
G̃ij�t,t�� ª ��t − t���ij + �T� �

�t
ci�t��cj

†�t���
�

.

�B11�

The time evolution of ci�t� is governed by the total Hamil-
tonian H+HG through the Heisenberg equation

i
�

�t
ci�t� = �ici�t� + 
ij�

m,ncj��t� + 2�i�
� �t�ci�t�ci�

† �t�

− 2�i��t�ci��t�ci�t� − V̄i�ij�k�ci�
† �t�cj��t�ck��t� − �i

�,

�B12�

where V̄ijkl= �Vijkl−Vjikl� /2. Substituting Eq. �B12� in Eq.
�B11�, we obtain

iI��,���
� �

�t
+ i�i�� j�i + i
ij�

m,n�t��G̃j�j�t,t��

= �ij��t − t�� + i�i
��cj

†�t����

+ iV̄i�ij�k��Tci�
† �t�cj��t�ck��t�cj

†�t���� − 2i�i�
� �t�

��Tci�t�ci�
† �t�cj

†�t���� + 2i�i��t��Tci��t�ci�t�cj
†�t����.

�B13�

We next connect the nonlinear terms in Eq. �B13� to the
one-particle Green’s function. By taking first and second de-
rivatives of Gij with respect to �i, we get

�G̃k�j�t,t��

�� j��t�
= − �Tcj��t�ck��t�cj

†�t����

+ �Tck��t�cj
†�t�����cj��t���,

�2G̃k�j�t,t��

��i�
� �t��� j��t�

= i�Tci�
† �t�cj��t�ck��t�cj

†�t����

− iG̃k�j�t,t��G̃j�i��t,t
+� + i

�G̃k�j�t,t��

�� j��t�
�ci�

† �t���

+ i
�G̃k�j�t,t��

��i�
� �t�

�cj��t���. �B14�

Using Eqs. �B14� in Eq. �B13� we finally get

G̃ik�
0 �t,t1�G̃k�j�t1,t�� = �ij��t − t�� + 
̃ik��t,t1�G̃k�j�t1,t�� ,

�B15�

where

G̃ij
0−1�t,t�� = 
�i

�

�t
− �i��ij + vij

�m,n��t����t − t�� , �B16�

with

vij
�m,n��t� = 
2i�i�

� �t���ci�
† �t��� +

�

��i�
� �t��

+ 2i�i��t���ci��t��� +
�

��i��t�
��

��ij + 
ij
�m,n��t� − iV̄i�ij�k�G̃j�i��t,t

+� . �B17�

Note that for ���=0 the first two terms in Eq. �B17� vanish
and vij

mn is the sum of Hartree and Coulomb potentials due to
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two-core holes. The function 
̃ij in Eq. �B15� is


̃ik��t,t1�G̃k�j�t1,t�� = − i�i
��t��cj

†�t��� + V̄i�ij�k�

�2G̃k�j�t,t��

��i�
� �t��� j��t�

− iV̄i�ij�k�

�G̃k�j�t,t��

�� j��t�
�ci�

† �t���

− iV̄i�ij�k�

�G̃k�j�t,t��

��i�
� �t�

�cj��t���. �B18�

When ���=0, all terms, except the second term which is

given by Eq. �B10�, vanish and 
̃ reduces to the self-energy

 due to electron-electron interaction.

In order to get a closed set of equations for the self-energy

, we make use of the identity,

G̃ij�
−1�t,t1�lG̃j�j�t1,t�� = �ij��t − t�� . �B19�

Differentiating Eq. �B19� once with respect to � j��t�, we can
write

G̃ik�
−1�t,t1�

�G̃k�j�t,t��

�� j��t�
= −

�G̃ik�
−1�t,t��

�� j��t�
G̃k�j�t,t�� . �B20�

Using Eq. �B20� in Eq. �B18� and doing some algebra we
obtain


̃ij�t,t�� = Wik�i1�j1�
�t1�t,t�G̃k�i1

Li1ji1�j1�
�t1,t1�,t1�� − i�i

��t�

��cj�
† �t1����G̃j�j

−1�t1�,t�� + Aij�t,t�� , �B21�

where

Wijkl�t1,t2,t3� = V̄i�ij�j
�2vkl�t1�

��i�
� �t3�� j��t3�

, �B22�

Lijkl�t1,t2,t3� = −
�G̃ij

−1�t1,t2�
�vkl�t3�

, �B23�

which for ���=0 reduce to the screened Coulomb potential
and the vertex function,12,13 respectively, and

Aij�t,t�� = iV̄i�ij�k�G̃k�j1
�t,t1��� �G̃j1j

−1�t1�,t��

�� j��t�
�cj�

† �t���

+ �cj��t���

�G̃j1j
−1�t1�,t��

��i�
� �t�

� − V̄i�ij�k�G̃k�i1
�t,t1�

�
�2G̃i1j

−1�t1,t��

�vi�1j�1
�t1���vi1j1

�t2��

�vi1�j1�
�t1��

��i�
� �t�

�vi1j1
�t2��

�� j��t�

+ �V̄i�ij�k�

�G̃k�i1
�t,t1�

��i�
� �t�

�G̃i1j
−1�t1,t��

�� j��t�
+ �i� ⇔ � j�� .

�B24�

When ���=0, Aij vanishes and only the first term on the rhs
of Eq. �B21� survives.

Using Eqs. �B15� and �B17� in Eqs. �B23� and �B22�,
respectively, and making use of the identity �B19�, we obtain
a closed equation for Lijkl and Wijkl,

Lijkl�t1,t2,t3� = − �ik�lj��t1 − t3���t1 − t2� +
�
̃ij�t1,t2�

�G̃i�j��t1�,t2��

�G̃i�j1�
�t1�,t3��L j1�j2�kl�t3�,t4�,t3�G̃j2�j��t4�,t2�� ,

�B25�

Wijkl�t1,t2,t3� = Qijkl�t1,t2,t3� − iV̄t1�kj1�lWiji1�j1�
�t3�,t2,t3�

�G̃j1�i1
�t,t��Li1k1i1�j1�

�t1�,t2�,t3��G̃k1i1�
�t2�,t1� ,

�B26�

where

Qijkl�t1,t2,t3� = iV̄i1�kj1�lV̄i�ij�jG̃j1�i1
�t1,t1��� �G̃i1k1

−1 �t1�,t2��

��i�
� �t2�

+
�G̃k1i1�

�t2�,t1�

�� j��t3� � + iV̄i1�kj1�lV̄i�ij�jG̃j1�i1
�t,t��

�G̃k1i1�
�t2�,t1�Ki1k1i�j��i1�,t2�,t3,t3�

+ 2iV̄i�ij�j
�2

��i�
� �t2��� j��t3�


�i�
� �t1���ci�

† �t1��

+
�

��i�
� �t1�

��kl + c.c.� . �B27�

On taking the limit ���=0, Eqs. �B15� and �B21� reduce
to a closed set of equations for the Green’s functions and the
self-energy

Gij
�m��t,t�� = Gij

0�m��t,t�� + Gij�
0�m��t,t1�
 j�k�

�m� �t1,t2�Gk�j
�m��t2,t� ,

�B28�


ij
m�t,t�� = Sik�i�j�

�m� �t1t,t�Gk�l
�m��t1,t2��lji�j�

�m� �t2,t1,t�� ,

�B29�

where S and � are the screened Coulomb interaction and the
vertex function, respectively, obtained from the reduction of
Eqs. �B25� and �B26�

�ijkl
�m��t1,t2,t3� = − �ik�lj��t1 − t3���t1 − t2� +

�
ij
�m��t1,t2�

�Gi�j�
�m� �t1�,t2��

�Gi�j1�
�m� �t1�,t3��� j1�j2�kl

�m� �t3�,t4�,t3�Gj2�j�
�m� �t4�,t2�� ,

�B30�
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Sijkl
�m��t1,t2,t3� = − iV̄i1�kj1�lSiji1�j1�

�m� �t3�,t2,t3�Gj1�i1

�m� �t,t��

��i1k1i1�j1�
�m� �t1�,t2�,t3��Gk1i1�

�m� �t2�,t1� . �B31�

The set of Eqs. �B28�–�B31� is exact.
We next derive a closed equation for the two-particle

Green’s function in the presence of a core hole created at
core orbital m. This can be readily generalized to the case of
two-core holes.

Equation �B15� can be written as

G̃ij�t,t�� = G̃ij
0 �t,t�� + G̃ij�

0 �t,t1��
̃ j�k��t1�,t2��G̃k�j�t2�,t�� .

�B32�

Differentiating Eq. �B32�, first with respect to �k�t3� and then
with respect to �l

��t4�, taking the limit ���=0, and making
use of Eq. �B10�, we get

��ik���t1 − t2�� − Gij�
0�m��t1,t1��
 j�k�

�m� �t1�,t2���Gk�jkl
�m� �t2�,t2,t3,t4�

= iGil
0�m��t1,t4�Gkj

�m��t3,t2� + Gij�
0�m��t1,t1��Gk�j

�m��t2�,t2�

�� j�k�lk
�m� �t1�,t2�,t3,t4� , �B33�

where

�ijkl
�m��t1,t2,t3,t4�

= � �2
̃ij�t1,t2�
��k

��t3���l�t4��
���=0

= 
 �

��k
��t3�� �
̃ij�t1,t2�

�G̃k�l��t1�,t2��

�G̃k�l��t1�,t2��

��l�t4� ��
���=0

=
�
ij�t1,t2�

�Gk�l��t1�,t2��
Gk�l�kl

�m� �t1�,t2�,t3,t4� , �B34�

where in going from second to the third line we used the fact
that ��G̃ij /��k����=0=0.

Substituting Eq. �B34� in Eq. �B33� and using Eq. �B28�
to replace the first line in Eq. �B33�, we get

Gijkl
�m��t1,t2,t3,t4� = iGkj

�m��t3,t2�Gil
�m��t1,t4� + Gii�

�m��t1,t1��

�Gk�j
�m��t2�,t2��i�k�i1�k1�

�m� �t1�,t2�,t3�,t4��

�Gijkl
�m��t1,t2,t3,t4� , �B35�

where kernel

�i�k�i1�k1�
�m� �t1�,t2�,t3�,t4�� =

�
i�k�
�m� �t1�,t2��

�Gl1�k1�
�m� �t3�,t4��

. �B36�

Equations �B28�–�B31� together with Eqs. �B35� and
�B36� constitute the set of Eqs. �18�–�22� used in the main
text.
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